Primary decor position

Now we state the more general version of primary de comp:

Theorem: Let R be Noetherian, M a f.g. R-module. Any proper submodule $M^{\prime} \subset M$ is the intersection of finitely many primary submodules:

$$
M^{\prime}=\bigcap_{i=1}^{n} M_{i}
$$

Where M_{i} is P_{i} primary, for prime ideals P_{1}, \ldots, P_{n}. Moreover:
a.) Every associated prime of M / M^{\prime} occurs among the P_{i}.
b.) If the intersection is irredundant (i.e. no M_{i} can be dropped), then the P_{i} are precisely the associated primes of $\mathrm{M} / \mathrm{M}^{\prime}$.
c.) If the intersection is minimal (i.e. no intersection $w /$ fewer terms exists), thu each associated prime of M / M^{\prime} is equal to P_{i} for exactly one i.

First, we generalize the notion of irreducibility to modules:

Def: A submodule $N \subseteq M$ is irreducible if N is not The intersection of two strictly larger subtuodules.

If R is Noeth. and M f.g., we can express M as the intersection of finitely many irreducible submodules by ACC (otherwise we have an infinite ascending chain of modules by removing one at a time), called an irreducible decomposition.

Proof of theorem: Let $M^{\prime}=\bigcap_{i} M_{i}$ be an irreducible decomposition of M^{\prime}.

Suppose some M_{i} is not primary and let P, Q be two distinct associated primes of M / M_{i}. Then
R / P and R / Q inject into M / M_{i} :
The annihilator of every element of M / P is P and of M / Q is Q, so their images in M / M_{i} intersect in 0 . Thus, O is reducible, so taking preimages of the two submodules in M, their intersection is M_{i}, which is thus reducible.

Thus, each M_{i} is primary, so this is a primary decomposition.
 $M^{\prime}=0$.
a.) Suppose $O=\bigcap_{i=1}^{n} M_{i}$ is a primary decomposition.

Then $M=M / \cap M_{i} \longrightarrow \oplus M / M_{i}$ is an injection since $m \longmapsto 0 \Longleftrightarrow m \in \bigcap M_{i} \Longleftrightarrow m=0$.

Thus Ass $M \subseteq \cup A s s M / M_{i}=\left\{P_{1}, \ldots, P_{n}\right\}$.
b.) Now suppose that for each $j, \bigcap_{i \neq j} M_{i} \neq 0$. We want to show that each $P_{i} \in A s s M$.

Fix j and set $A=\bigcap_{i \neq j} M, B=M_{j}$ so $A \cap B=0$.
Then $A=A / A \cap B \underset{\substack{\text { Isomorphism } \\ \text { theorem }}}{\cong A+B / B \subseteq M / B=M / M_{j}}$
M_{j} is P_{j}-primary, so M / M_{j} is P_{j}-coprimary, so A is as well (since Ass $A \neq \varnothing$).

Thus, $\left\{P_{j}\right\}=A s s A \subseteq A s s M$.
c.) Now suppose the decomposition is minimal. If $P_{i}=P_{j}$, then $M_{i} \cap M_{j}$ is P_{i}-primary. the P_{i} must be d istinct.

Suppose $M^{\prime} \subseteq M$ and $M^{\prime}=\bigcap_{i} M_{i}$ the minimal primary
decomp. $w / M_{i} P_{i}$-primary. If P_{i} is minimal over $\operatorname{Ann} M / M^{\prime}$, we can find M_{i} as follows:

Claim: in the situation described above,

$$
M_{i}=k_{\text {er }}\left(M / M^{\prime} \rightarrow\left(M^{\prime} /\right)_{P_{i}}\right)
$$

Pf: Just as before, assume $M^{\prime}=0$. Consider the following commutative diagram:

$\operatorname{ker}\left(M \rightarrow M / M_{i}\right)=M_{i}$, so if we can show the two right maps are infective, we're done.
M_{i} is P_{i}-primary, so P_{i} contains all the zee divisors on M / M_{i}, so
$M / M_{i} \rightarrow\left(M / M_{i}\right)_{p_{i}}$ is an injection.
For the other map, note that
$\bigcap_{j} M_{j}=0$, so $\quad \varphi: M \rightarrow \underset{\delta}{\oplus} M / M_{j}$ is infective. Thus, $\quad M_{p_{i}} \rightarrow \underset{j}{\oplus}\left(M / M_{j}\right)_{p_{i}}$ is injective.

For $j \neq i, P_{j} \not \not \not \subset P_{i}$ by minimality. Thus, take $u \in P_{j} \backslash P_{i}$.
M_{j} is P_{j}-primary, so some power of u annihilates $M / M_{j}, \operatorname{so}\left(M / M_{j}\right)_{P_{i}}=0$.

Thus, $M_{p_{i}} \longrightarrow\left(M / M_{i}\right)_{p_{i}}$ is injective.

Primary decomposition and localization

Suppose we have a minimal primary decomposition

$$
M^{\prime}=\bigcap_{i=1}^{n} M_{i} \quad \subseteq M, \quad\left\{P_{i}\right\} \text { corr. primes. }
$$

Let $U \subseteq R$ multiplicative, and reindex the M_{i} so that P_{1}, \ldots, P_{t} are the P_{i} not meeting U.

Claim: $U^{-1} M^{\prime}=\bigcap_{i=1}^{t} U^{-1} M_{i}$ is a minimal primary decomposition.

Pf: Again as sumer $M^{\prime}=0$.

First note that $0=\bigcap_{i=1}^{n} u^{-1} M_{i}$, since localization commutes $w /$ finite intersections. That is, suppose $\frac{m_{i}}{u_{i}} \in U^{-1} M_{i}, \frac{m_{j}}{u_{j}} \in U^{-1} M_{j}$ s.t.

$$
\frac{m_{i}}{u_{i}}=\frac{m_{j}}{u_{j}} \in u^{-1} M_{i} \cap u^{-1} M_{j}
$$

Then $\exists v \in U$ sit. $v u_{j} m_{i}=v u_{i} m_{j} \in M_{i} \cap M_{j}$
so $\quad \frac{m_{i}}{u_{i}}=\frac{v u_{j} m_{i}}{v u_{j} u_{i}} \in u^{-1}\left(M_{i} \cap M_{j}\right)_{j}$
so $\bigcap_{i=1}^{n} u^{-1} \mu_{i}=u^{-1}\left(\bigcap_{i=1}^{n} M_{i}\right)=0$.
If $U \cap P_{i}=\varnothing$, then Ass $U^{-1} M_{i}=\left\{P_{i}\left(U^{-1} R\right)\right\}$, so $U^{-1} M_{i}$ is $P_{i}\left(U^{-1} R\right)$-primary.

If $U \cap P_{i} \neq \varnothing$, then $U^{-1}\left(M / M_{i}\right)=0 \Rightarrow U^{-1} M_{i}=U^{-1} M$.
Thus $0=\bigcap_{i=1}^{t} u^{-1} M_{i}$, and this is a primary decomp.

Moreover, $U^{-1} P_{1}, \ldots, U^{-1} P_{t}$ are exactly the associated primes of $U^{-1} M$, so this decomp is minimal. D

Primary de composition of principal ideals

We mentioned earlier that in π, or in a PID more generally, we can decompose any ideal as the intersection of ideals generated by powers of primes. We can generalize this to certain principal ideals in integral domains:

Prop: Let R be a Noetherian integral domain. If $f \in R$ can be written $f=u \Pi_{p_{i} e_{i}}$ s.t. u is a unit and The p_{i} 's are prime, generating distinct ideals, $e_{i}>0$, Then $\quad(f)=\bigcap\left(p_{i}^{e_{i}}\right)$ is a minimal primary decomposition of (f).

Pf: First we show ($p_{i}^{e_{i}}$) is (p_{i})-primary.
Clearly a power of $\left(p_{i}\right)$ annihilates $R /\left(p_{i}^{p_{i}}\right)$.
If $r \in R \backslash\left(p_{i}\right)$ and $r m \in\left(p_{i}^{l_{i}}\right)$, then since p_{i} is prime, $m \in p_{i}^{e_{i}}$. i.e. r is a NZD on $R /\left(p_{i}^{p_{i}}\right)$. Thus, $\left(p_{i}^{e_{i}}\right)$ is ($\left.p_{i}\right)$-primary.

Clearly $(f) \subseteq \cap\left(p_{i}^{e i}\right)$, so we need to show the reverse inclusion. We'll prove by induction.

Let $g=u \prod_{i \neq 1} p_{i}^{e_{i}}$. Assume that $(g)=\bigcap_{i \neq 1}\left(p_{i}^{e_{i}}\right)$
We need to show $(g) \cap\left(p_{1}^{e_{1}}\right) \subseteq(f)$.
Let $r \in(g) \cap\left(p_{1}^{e_{1}}\right)$. Thun $r=g q \in\left(p_{1}^{e_{1}}\right)$. $p_{1} \nmid g$, so $p_{1} \mid q$. Repeating, we get $p_{1}^{e_{1}} \mid q \Rightarrow r \in(f)$. D

Of course, not all elements can be written as the product of primes. (We will see an example on the HW of a principal ideal whose associated primes are not principal.) However, in a UFD this always works.

